
Theor Chim Acta (1991) 79:241-269 Theorefica 
Chimica Acta 
© Springer-Verlag 1991 

Variational reactive scattering calculations: 
computational optimization strategies 

David W. Schwenke 1, Steven L. Mielke 2, and Donald G. Truhlar 2 
i NASA Ames Research Center, MS 230-3, Moffett Field, CA 94035, USA 
2 Department of Chemistry, Chemical Physics Program, and Supercomputer Institute, University of 
Minnesota, Minneapolis, MN 55455, USA 

Received September 1, 1990/Accepted November 13, 1990 

Summary. We have developed efficient and accurate techniques for the calcula- 
tion of quantum mechanical reaction probabilities of atom-diatom exchange 
reactions in the gas phase, and we have optimized a computer code employing 
these techniques and applied it sucessfully to several systems. In this paper we 
consider further strategies for improving the algorithm to allow even more 
demanding applications. In this context, improvement means that equivalent 
results can be obtained using fewer computational resources (computer time or 
storage) or that an equivalent expenditure of resources can yield higher accuracy. 
The new strategies discussed here lead to improvement in both of these areas. 
Two areas of special focus in the present paper are (i) the finite difference 
boundary value method used for calculating distorted wave Green's functions 
and regular solutions for scattering by the distortion potential and (ii) the choice 
of the distortion potential itself. Among other results included here is the first 
application of the outgoing wave or scattered wave variational principle to 
reactive scattering. 
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1. Introduction 

A recent exciting advance in the field of chemical reaction dynamics has been the 
development of efficient and general algorithms [1-13] capable of computing 
accurate reactive transition probabilities and state-to-state cross sections for 
atom-diatomic molecule reactive scattering events without any dynamical ap- 
proximations. Several of our own applications of these algorithms are discussed 
in a recent overview paper [14] along with a complete (through early 1990) set 
of references to work by others. These calculations are difficult, and specialized 
techniques and thoughtful choices among implementation alternatives are re- 
quired to make the most demanding calculations feasible. Some "tricks of the 
trade" are very dependent for their efficacy on the particular algorithm em- 
ployed, but others are more general in their potential usefulness. In some cases 
the algorithmic enhancements are very subtle, but they can nevertheless have a 
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significant effect on the accuracy and efficiency of an algorithm. In this paper we 
will explore some algorithmic considerations that affect the generalized Newton 
variational principle (GNVP) algorithm that we have presented elsewhere 
[11, 12], and we discuss various ways to improve the efficiency of such calcula- 
tions. We also present the computational details necessary to extend the scattered 
wave variational principle (SWVP) for the T matrix [15-17] and its S matrix 
analog, the outgoing wave variational principle (OWVP) [ 16], to reactive scatter- 
ing. The present paper plus three others [11, 12, 18], taken together along with 
the description [3] of the method of moments for the amplitude density, include 
the major computational considerations that have guided the development of our 
current computer code. 

Section 2 outlines the general theoretical and computational considerations 
which form the framework of our algorithm, Sect. 3 describes the specialized 
techniques and implementation details not discussed in our previous publica- 
tions, Sect. 4 contains illustrative results of applications of these techniques to 
the D + H 2 and F + H2 reactions, and Sect. 5 contains our conclusions. 

2. Theoretical framework 

In our original work on accurate quantum dynamical calculations for three- 
dimensional chemical reactions we employed the method of moments for the 
amplitude density (MMAD) [2, 3, 14, 19-22], and in later work we employed the 
generalized Newton variational principle (GNVP) for both real and complex 
boundary conditions [10-12, 14, 18, 21-23]. More recently we have demonstrated 
that the GNVP for complex T matrix boundary conditions is a special case of a 
more general variational principle called the scattered wave variational principle 
(SWVP) [16, 17], which was originally stated by Schlessinger [15]. When imple- 
menting the more general variational principles, one has the choice of using either 
the SWVP, which yields directly the transition (T) matrix, or the OWVP, which 
yields directly the scattering (S) matrix. Because of the linear relation between the 
T and S matrices, these two variational principles will give identical results for a 
given choice of basis set and numerical parameters, so the choice is a question of 
convenience. In this section we give the details required to extend our procedures 
to the more general basis functions allowed by the SWVP or OWVP. Details not 
covered are the same as in our previous work [11, 12, 18]; thus the reader is 
directed to these previous papers for additional information. 

In the present discussion we explicitly consider GNVP and OWVP calcula- 
tions in which we directly form the scattering matrix, although direct evaluation 
of the reactance or transition matrix proceeds similarly. The scattering matrix 
elements are labeled Snno, where n denotes a full set of atom-diatom quantum 
numbers, in particular: en, which specifies the asymptotic arrangement of the 
atoms, v,, the number of nodes in the radial vibrational wave function, j , ,  the 
internal rotational quantum number, ln, the quantum number for orbital angular 
momentum of relative translational motion, J, the total angular momentum, M, 
the projection of the total angular momentum on the laboratory fixed z axis, and 
P, the parity. Although the arrangement channel quantum number e is included 
in n, we find it helpful in making the structure of the equations more clear to give 
at times both n and ~, although this is redundant. 

For convenience, we include the quantum numbers J, M, and P in n, and we 
take advantage of the rigorous decoupling of wave functions labeled by different 
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J, M, and P values to solve for the J M P  blocks separately. The results for a 
given J and P are independent of M so we will label the blocks by their J and 
P values. (Only one P block occurs for J = 0 so this JP block can be labeled by 
J alone.) Quantities labeled only by the quantum numbers ~, v, and j will be 
called "states", and the specification of both the state and the quantum numbers 
l, J, M, and P yields a "channel", labeled n. 

We will split the Hamiltonian into two parts: a zero order part H y, which 
contains all of the kinetic energy terms and the diatomic binding potential, but 
only part of the interaction potential energy between the atom and diatom, and 
a second part consisting of the rest of the interaction potential. The part of the 
interaction potential included in H~ is called the distortion potential or V °,~, and 
the rest is called the coupling potential V c. Thus we have: 

H = H D + V c, (1) 

and we use solutions of H D - E = 0 in constructing the scattering matrix for the 
full Hamiltonian. We define H D such that the scattering problem decouples into 
blocks diagonal in ~ and sometimes in other indices as well. Thus: 

VD:= Z A~.,]c~)V~n,(O~.,], (2) 
nn' 

where A,].,, is unity if channels n and n' belong to the same distortion potential 
block and is zero otherwise, ¢~. is a channel vibrational-rotational-orbital 
function, and V~., is a matrix element of the full interaction potential between 
the atom and diatom in the ¢~  basis. Then we compute the coupling potential 
from the equation V c = H -- H D. 

The scattering matrix is written as: 

S.o o = 6 .... o°S--o + ~-o,  (3) 

where °S.. o is an element of the scattering matrix due to the Hamiltonian H~  
and ~ . o  is an element of the correction due to V c, which is given in the GNVP 
by the expression: 

6 ¢ = 5 ¢8 + BrC-1B. (4) 

The matrices _~_~B, ~, and ~7 are complex. An efficient way to compute them from 
their real analogs, ~_~_B, B, and C, which are appropriate for reactance matrix 
boundary conditions, is discussed elsewhere [18]; thus we only give the expres- 
sions for the real matrices. For these, in the GNVP, we have: 

oY dR ~ R A ~o R . . o -  ~0 . , .~(~o) n~.0 f .~no(~o) ,  (5) 
d no 

i n~ c~0 (r) c~0 B#.o= dR~o  f~#n,o(R=o)A.,o.o f.,o.o(R~o), (6) 

"~non'k ce] ri'nt~n'fl\ o;1 0 t3 fi fl A '  (7)  

and 

~ d R c ~ n ( R c ~ ) t ~ m O n ( R ~ ) _ _ ~ d R o ; o  E o~ 0 ,N  G:0 = j j ~"'o(R~°)A"'°""o g"'°z°(R~°)' o #o 0 ~0 t% o nb 

(8) 
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where n and n' are channels in arrangement a, no and n;  are channels in 
arrangement ~o,/3 is a composite basis function index corresponding to the union 
of na and the translational basis function label ma, /3 is a basis function in 
arrangement e, /3 0 is a basis function in arrangement Co, R, is the mass-scaled 
distance [3] from the atom to center of mass of the diatom in arrangement e, 
elan° . is the regular radial function due to scattering by the distortion potential, 

~Z . O  . . . .  ~ N  " " ' 
tmn IS a radxal translational basis functlon,~g.a ~s a radml half integrated Green s 
function (HIGF)  [11], and ~ -o ,  ffa-o, ~ - o ,  and ~-~-o are auxiliary integrals 
defined below. As in previous work, we directly calculate both the radial regular 
functions and the radial HIGF's  by means of the finite difference boundary value 
method (FDBVM) [ 11]. 

We note that ~ and C are symmetric matrices, and the two expressions 
for~ B~ o arise because our code only calculates the auxiliary integrals ~ , o ,  fq~-o, 
~ , o ,  and ~ - o  for e = eo or e = e0 + 1 (modulo 3) [18]. Thus we use Eq. (6) for 

-- ~o or ~ = ~o + 1 (modulo 3) and Eq. (7) for e = eo - 1 (modulo 3). 
The auxiliary integrals required above are given by: 

= ~XO; 
(9) 

otherwise, 
fs " A~o,e)f ~o (R ~e (R 

z . . .~n '  n n  .] n ' n  ", ~ o "  n ' n o  " -  ~ o  , '  ~ 

(r) . ~o 

f ~. ,  A ~°~,+~,N~(R~,o)en,,,o(R~o ), 

.a.,g.,~(R~) W~,,.o(R~, R~o), 

( A~o e)r~o (R 
_ l ; _  

3-~° = dR~ ~ ~ (0 ~ ~o n 'A,,n' fn'n(R~)~n'no(R~, R~o), 

= ~0; (10) 
otherwise, 

= " o ;  (11) 
otherwise, 

and 

'~  eO " N R 
Ant~nogno#(~0) ,  ~ = ~ o ,  

3~° = I ~ dR~ ~,~, A~ ~,~(R~)JJ~o(R~, R~o), otherwise. 
(12) 

In Eqs. (9, 10), enno is an intra-arrangement matrix element of -2laVC/h 2 in the 
qS~n basis [11], and ~t is the system reduced mass [13]. The exchange matrix 
eement  W~. o is the rater-arrangement analog of e~ o, and it is given in terms of 
more primitive exchange integrals by: 

W~°(R R ~ o ) = ~ ° r R  R~o)--~A~° .~W°(R R~o)U:°.o(R~o ), (13) n n  o ',. ez , ~ n n  o ",. o; ~ - -  n ,on o v ~  n n  b . . . -  -o: , 

n'o 

where ~ 9  is equal to - 2 g / h  2 times the overlap between the basis functions of 
the two arrangements at fixed R~ and R~o, cg~o is equal to - 2 p / h  2 times the 
average of  the full potential weighted by the basis functions of  the two arrange- 
ments [11, 12], and U~, is - 2 # / h  2 times V~,,,,. The matrix elements cg~o o and ~ o  
are evaluated computationally as one-dimensional quadratures over the angle 
between the two vectors along the distances R~ and R~o [11, 12]. 

So far the equations we have given are specific to the GNVP. In the SWVP 
or OWVP we replace some of the HIGF's  with more general functions [ 16, 17]. 
This requires that we modify some equations. In the more general variational 
principles, we will consider two types of basis functions for the wave function, 
or, more precisely, the scattered wave or outgoing wave part of the wave 
function. The first kind of basis function is taken to be a product of a qS~ times 
a radial HIGF.  If all basis functions are of this type the OWVP becomes 
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equivalent to the GNVP for the scattering matrix in which we expand the 
reactive amplitude density (AD) in terms of ¢~, functions times the square 
integrable radial translational basis functions which generated the HIGF's. Thus 
this kind of basis function will be called an AD basis function. The second kind 
of basis function we will use is a product of a ¢~, and a square integrable 
energy-independent radial translational function [ 16, 17] that is used to expand 
the radial wave function. This kind of basis function will be called a WF (wave 
function) or energy-independent basis function. 

The main modification to the equations in going from the GNVP to the 
OWVP is the definition of C, Eq. (8). All of the other equations remain 
unchanged provided that we make the substitution: 

" N  ---)(~nn t~' n (14) gn~ ~ ~ 

whenever a WF basis function occurs. The new definition of C requires the 
additional auxiliary matrix elements: 

~ AO~o .,~.u t R "~rr~o(ef:/)( R "l 
L.a n#nb~nbfl\  o;o]L'J n'on o k c~o1~ ~ = O~O'~ 

i~ (15) %° = R o), otherwise ,  

where --~n'rf~(e~ and --n'n~O(e~O differ from U~, and Z~'~o by the addition of the 
centrifugal potential to the full potential. This results because we move the 
centrifugal potential from the first to the second term in Eq. (8). The centrifugal 
potential is included in the second term because we usually compute these 
integrals in the body frame [12], hence this contribution is usually nondiagonal. 
However, it is easy to compute because it is simply proportional to 1/R2o , which 
is independent of the integration variable for the Z~o and ~ o  matrix elements; 
thus ~ 9  ~ is just a linear combination of the ~,~o and ~ o  matrix elements. 
Then we have the new expression: f ,   0AO\ 

- - f  dR~°~ [~,o(R~o)3~n~ot~o~,o(R~o) floWFJ (16) 

These generalizations are sufficient for either the scattered wave variational 
principle (SWVP) for the T matrix or the outgoing wave variational principle 
(OWVP) for the S matrix; these formulations differ only in terms of the 
boundary conditions applied to the radial functions [16]. This gives rise to a 
phase factor difference for the matrix elements of the complex matrices and the 
replacement of the scattering matrix due to the distortion Hamiltonian with the 
T matrix due to the distortion Hamiltonian. 

3. Implementation 

Although we have always attempted to make our code as efficient as possible, it 
has undergone continual evolution, and with each incarnation it is faster than 
before. We have also made several improvements in memory management. In 
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this section various practical aspects of the algorithm are discussed with the 
emphasis on our most recent improvements. We start with a discussion of loop 
optimization, followed by an analysis of the memory requirements. Then the 
choice of the parameters in the FDBVM is analyzed. Next the construction of the 
vibrational weights and nodes is reviewed, and finally techniques for mitigating 
the expense of including high j states are described. 

3.1. Loop optimization 

The most recent improvements in the efficiency of our code come from 
two sources: minimizing the amount of inessential work by skipping over 
negligible contributions to the integrals and improving the efficiency of the 
essential operations themselves. In the first area we have introduced the five 
screening parameters E z, Eraa, Et, EW, and E~. The first of these, ~x, acts by 
controlling the number of points included in the inner loop (the angular 
quadrature) of the exchange integrals and has been discussed previously [ 12]. It 
works by rejecting quadrature points which give small contributions because the 
vibrational wave functions )~,e are small--points are rejected if it is estimated that 
[Z~/[ < ex for all vj [12]. The rejecting of angular quadrature points has two 
possible effects: first, when it eliminates some of the angular quadrature points for 
that R~, R~0 pair, it reduces the work required to construct ~ o  and _ ~ 0  for a given 
pair of R~ and R~0; second, when it eliminates all the angular quadrature points 
for a given R~, R~0 pair, it reduces the work required for the formation of the 
auxiliary integrals [Eqs. (9-12, 15)] or even the final ~B,  B, and Cmatrices. Since 
the auxiliary integrals in Eqs. (10, 12, 15) have a ba-~ function index as well as 
a channel index, and since the number of basis functions greatly exceeds the 
number of channels, the latter effect is often much more important. 

Because the loop over radial quadratures is not the inner loop, there is no 
penality in efficiency when radial quadrature points are eliminated; however for 
the angular quadrature, which is the innermost loop, care must be taken to ensure 
that the degraded efficiency due to decreased vector lengths does not become 
significant. For some pairs of R~ and R~o, e x can cause the elimination of all but 
a few angles in the quadrature sum which then decreases the efficiency of the 
calculation of the integrand at the quadrature points. To improve on this 
situation, angles are collected from several different values of R~, and the 
integrand is computed in parallel for these angles. The integral is still computed 
from the integrand as described previously [12]. 

The other four screening parameters typically have a smaller effect but can be 
important in certain circumstances. The first of these, Erad, controls the starting 
points of radial integrals in terms of the magnitudes of the regular radial functions 
and the radial parts of the HIGF's occurring in the integrals. For each radial 
function of each distortion block, the maximum distance for which the magnitudes 
of all functions are less than the fraction Erae of their maximum magnitude is 
determined. Then for each arrangement, the minimum of these distances is 
determined, and all radial quadrature points less than this minimum are excluded 
from the various integrals involved in Eqs. (5-16). 

For the AD or WF basis functions, we control the neglect of their contribu- 
tions by the parameter E,. This is done by assuming that whenever a basis function 
is less than E~ of its maximum value, the integrand which contains that function 
is negligible. This parameter only has a small effect when only AD functions are 
used and the manipulations described in Sect. 2.3 of Ref. [ 18] to reduce the work 
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associated with the HIGF's are not performed. This is because in this case it is 
only used to eliminate work in the evaluation of the first integral in Eq. (8) and 
the second term in Eq. (7). However these terms are relatively inexpensive 
compared to the others in these equations because no matrix multiples are 
required for the t~mn contribution. 

The other two screening parameters, ew and Ee, are applied to the matrices 
W ~0 and ~,~0, respectively. Once these matrices have been computed at a given 
pair of R~ and R~o, the maximum magnitude of the matrix elements of W ~o ( ~ o )  
is determined and if this magnitude is less than Ew (ee), then the contribufi-ons 
to ~ and f9 (J_~ and ~ are neglected. 

We have observed that in certain circumstances these screening parameters are 
not sufficient to eliminate all contributions that have a negligible effect. In 
particular, we have observed in some calculations for the exothermic F + H2 
reaction, that if one is only interested in transitions out of this arrangement, the 
inter-arrangement matrix elements between the two identical H + HF arrange- 
ments can be set to zero with only a very small impact on the results. Similarly 
one can sometimes calculate converged state-to-state reaction probabilities for 
D ÷ H2--* HD + H without calculating the exchange integrals between the two 
HD + H arrangements. We do not attempt to eliminate these contributions with 
a screening parameter, but rather by carefully converging the calculations with 
respect to the angular quadrature grids since, if these contributions can be 
neglected, the transition probabilities of interest will be converged with a low or 
zero value of the number of quadrature points in the unimportant angular 
exchange integrals. 

The improvement in efficiency for essential operations has primarily been 
obtained in the calculations of the integrals in Eqs. (5-16), and the main tool has 
been an optimization of the storage of the matrices. This minimizes non- 
productive work, i.e. data motion. We find it convenient to store the matrix 
elements of _~ s, B, and C and the auxiliary matrices [Eqs. (9-12, 15)] in a rather 
mixed up order during their computation. Once they are computed, they have to 
be reordered before transforming to complex boundary conditions and solving Eq. 
(4). First of all we consider each arrangement pair separately. There will be ~.unique 
intra-arrangement pairs and ~unique inter-arrangement pairs, where ~unique lS the 
number of unique arrangements. These are stored as separate matrices, i.e., all 
matrix elements for a given arrangement pair are stored in contiguous memory 
locations. Furthermore, the matrix elements for ~B,  B, and C for each distortion 
potential block pair are also stored as a unit, thus these three matrices come out 
intermingled. The reason for this is the observation that with the exception of the 
first terms in Eqs. (8) and (16) and the sign on the second terms, there is no 
difference in the operations that are performed with the (rf~, n and the ~ .  To 
eliminate these small differences, we compute the negative of C and include an 
extra term in B, i.e, for intra-arrangement integrals we compute: 

Bno ~ = BI~To -- dR~o~'non~(R~o )tm~np(Rc, o). (17) 
,d 

Then, after the integration is complete, this extra "surface term" is subtracted off 
and the result transposed. The reason this is done only for the intra-arrangement 
integrals is because typically more quadrature points contribute to these integrals 
and the relative efficiency of the operations is not as great because of the presence 
of the A,~o b in Eqs. (9-12, 15). 

Also for efficiency, the auxiliary integrals ~ and ~ ,a  (~-2~,b and ~ , a )  are 
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intermingled. Grouping the regular radial functions and HIGF's  together in this 
manner minimizes the overheads associated with deciding where the results of a 
given operation should be stored. The storage scheme also can pay dividends 
when memory is considered. 

3.2. Memory considerations 

The calculations we have performed sometimes require large amounts of mem- 
ory. Our approach was originally developed to take advantage of large-memory 
supercomputers, and it does indeed do so. Nevertheless there are obvious 
advantages to using the least amount of memory that allows a given task to be 
performed efficiently, and we have tried to do this as well. In this section we 
discuss t.he current storage requirements of the program and strategies that are 
being used or can be used to minimize these. 

To predict in advance of a calculation the exact amount of memory the code 
will require is a fairly complicated task, primarily because the code reuses 
memory locations that hold intermediate results. To facilitate this, all of the large 
matrices--as well as some other quantities--are stored in one massive array in 
blank common. Then, as program steps are completed, parts of this array which 
were used for scratch space can be reused for other purposes in subsequent 
program steps. This minimizes the total memory required compared to a fixed 
partitioning of memory into specific arrays. Occasionally, it becomes necessary 
to move array elements from one part of the massive array to others in order to 
close up unused spaces--this does not represent useful work, and so such data 
movement is minimized as much as possible. 

In order to estimate the maximum amount of memory the program requires, 
it is necessary to understand the program structure. In this discussion, we will 
only explicitly consider the memory requirements for a "large" calculation with 
"reasonable" choices of the numerical parameters. Thus the equations presented 
do not yield the exact amount of memory needed, but they are sufficient for 
strategic considerations. 

The first task the code performs is the construction of energy-independent 
quantities, such as the computation of the diatomic wave functions and the 
weights and nodes for intra-arrangement vibrational quadratures. Most of these 
quantities require an insignificant amount of memory with the largest require- 
ment being for the vibrational weights and various pointers. The code allocates 
a total ~uniquo ev 2 of 7 . N~ (N~) words of storage for the vibrational weights, where 
N~ v is the user-specified number of points m the vibrational quadrature, and N~ 
is the total number of channels in arrangement c~. (Actually the number of 
unique weights in a given arrangement is proportional to the number of states 
squared, not the number of channels squared, but storing the weights for each 
channel pair is more convenient for vectorization.) The relative importance of 
this contribution to total memory depends on the size of N~ v. We make this as 
small as possible by using an optimized quadrature algorithm [24]. Further 
details of this technique can be found in Sect. 3.4. For the pointers, a total of 
(5MNARG+3~unique)MNCHAXxMNTBAS words are allocated, where 
M N A R G  is a program parameter specifying the maximum number of arrange- 
ments, MNCHAX is a program parameter specifying the maximum number of 
channels per arrangement, and MNTBAS is a program parameter specifying the 
maximum number of translational basis functions per channel. For convenience 
later on, call this memory allocation M Eina, i.e.: 
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~unique 
M eind = ~ NQV(N~) 2 + (5MNARG + 3euniqu~)MNCHAX x MNTBAS. (18) 

These weights and most of the pointers must be retained until the computation 
of the matrix elements is complete, but are not required for the solution of the 
linear equations, Eq. (4). However if calculations at several energies are to be 
performed in one run, this information must be kept until the matrix elements for 
the last energy are computed. In the discussion below we assume that energy- 
independent quantities of this kind are saved, although we list this amount of 
storage separately so that one can easily see what the storage requirements would 
be without saving these quantities. The additional storage that would be required 
to take advantage of the simple energy dependence of some matrix elements 
involving energy-independent WF basis functions is not considered in this paper. 

Next the code loops over energies and performs the energy-dependent steps, 
which we divide into three parts. The first is the calculation of the regular radial 
functions and the radial HIGF's. We will call the program section which controls 
this operation link 9. The next step is the calculation of matrix elements of Eqs. 
(5)-(16). We will call the program section which controls this operation link 10. 
The final expensive step is the evaluation of the right hand side of Eq. (4). We 
will call the program section performing this operation link 11. Which link of the 
three will be the most expensive will depend on the parameters used in a given 
calculation, and furthermore the link which requires the most memory will not 
necessarily require the most CPU time. 

Now consider the memory requirements for link 9. The calculation of the 
radial functions is done for each arrangement separately. The memory here is 
divided into two categories. The first is "global", i.e. that which needs to be passed 
to subsequent links, in contrast to the "local" storage required just for the 
computation of the global information. The global information consists of the 
radial functions at the quadrature points and some matrices specifying the 
boundary conditions, e.g. the reactance matrices going into 0y .  This requires a 
total of: 

Mr~d = NQRS( ~(~) Nrot,~(~)(Nrot,~(~) + NAD,~(~)) ) + 3 ~,, (19) 

words, where N~ Rs is the number of radial quadrature points, the sum over 6(~) 
is over distortion potential blocks of arrangement ~, Nrot,~(~) is the number of 
channels in distortion block 3(c 0, and NAO,~(~) is the total number of AD 
translational basis functions in distortion block 6(c 0. It should be noted that 
NAO,~(~) is the sum over channels in distortion block 6(~) of the number of AD 
translational basis functions for each channel. We have made a simplifying 
assumption in giving this formula. As discussed previously [18], it is possible to 
relate the radial HIGF's to the regular radial functions and other radial HIGF's 
in a manner which diminishes the storage requirement of the radial HIGF's, but 
we assume here that this option is not used. 

The local information which is required depends on the maximum number of 
channels in a distortion block, but not on the number of blocks. Let Nro, ...... be 
the maximum value of N~ot,~(~) for arrangement ~. Then the maximum local 
memory allocation is: 

M rad, loc F 2 = N~ [(Nro ' . . . . . .  ) (2 + 3(N FD -- 1)/2) + NQVN~] (20) 

where N F is the number of grid points in the FDBVM, N FD is the number of 
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points in the finite difference approximation to the second derivative operator, and 
N~ is the number of Legendre polynomial expansion coefficients for the potential 
which are saved from block to block. Most of M raa'~°c is taken up by the matrix 
required for the FDBVM, and this cannot be diminished except by changing the 
FDBVM parameters. However the potential expansion coefficients can be recal- 
culated for each distortion potential block--thus N~ can be set to zero. Depending 
on the size of a particular calculation, the disadvantage of recalculating the 
expansion coefficients may be counterbalanced by the memory savings, although 
in general our experience is that the memory savings from this option are rather 
modest. Then the total memory required to compute the radial regular functions 
and HIGF's for arrangement ~ is M E i n d  + I~rrad'l°c-'~ - ~ M rad ~ ' =  I It should be 
noted that since the upper limit in the sum in this expression is e, the maximum 
amount of memory used in this step is dependent on the ordering of the 
arrangements, i.e. to minimize the storage, ~---1 should correspond to the 
arrangement having the largest value of Mrfl a't°c. 

The next step is the computation of the matrix elements of Eqs. (5)- (16), link 
10. After the completion of link 9, the total memory being used is 
Mei,,u ~ V~unique ]~rrad The main new memory usage in link 10 step is the storage 

- - / . . ~ =  1 ~ ' ~  • 

for the o~ 8, B, and C matrix elements. These are the matrix elements that must 
be passed to link 11. If no symmetry is present, when the intra-arrangement matrix 
elements for arrangement ~ and the inter-arrangement matrix element for ~ and 

+ 1 are being formed, this requires: 

MK~c( ~)= ~ (M+) 2+ ~ M+M+~" ¢+1 (21) 
c~' = 1 c( = 1 

words of storage, where 

M + = ~ (Nrot,~(~,) + NADWF,~(j (22) 
6(~') 

NADWV,~(~) is the number of AD and WF translational functions in distortion block 
6(~), and ~' + 1 is considered to be modulo ~,,iquo. As with NAD,a~), NADWF,~(~) 
is the sum over channels in distortion block 6(~) of the number of AD and WF 
translational basis functions per channel. 

In addition to this storage, we require local storage amounting to 

ml°c(~) =M+( f (WF)N~+I  + max (Nrot,~(~+i) + NADWF,~(~+~))) (23) 
~(~ + I ) 

words for the computation of the matrix elements, where f (WF) is three if WF 
basis functions are used and two if only AD basis functions are used, and ~ + 1 
is considered modulo ~,,~qu~. The part of this memory proportional to the f (WF) 
factor is used to store the matrices of Eqs. (9-12, 15) at a given value of R~0 for 
the inter-arrangement integrals and the part proportional to the max term in 
Eq. (23) is used to temporarily store the results of the matrix multiples of 
Eqs. (5-7, 16). 

If some of the particles are identical, then the magnitude of MX~C(~) can be 
reduced. This is because some inter-arrangement matrix elements are related and 
there are some distortion blocks for which there is no intra-arrangement coupling 
[12]. To facilitate the processing of the intra-arrangement integrals in this case, 
we have introduced in our code what we call subarrangements. This is useful when 
the diatom of an arrangement is homonuclear. Then, since the odd and even 
internal rotational states are not coupled by intra-arrangement matrix elements, 
it is advantageous to group channels with even and oddj  separately. Thus the two 
subarrangements are made up of the even and odd j channels, respectively. The 
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intra-arrangement matrix elements for the two subarrangements are stored 
separately. 

For the inter-arrangement integrals with both arrangements indistinguish- 
able, only the lower triangle is stored, and this is done by columns. For the 
intra-arrangement integrals, which are always symmetric provided the integrals 
and integrands are evaluated exactly (the composite matrix formed from the 
intermingled ___~B, B, and C matrices is symmetric even though B is rectangular), 
we compute only the upper triangle, but store this in an array dimensioned for 
the full matrix. However, parts of the memory allocated for the lower triangle 
are used temporarily in the construction of the auxiliary intra-arrangement 
integrals, the upper case in Eqs. (9-12, 15). Thus all of the memory for the lower 
triangle is not wasted. The motivation for this strategy is a consideration of the 
data motion and indexing required for other choices. 

These savings due to symmetry amount to approximately a factor of two for 
the (M+) z term in Eq. (21) when ~' corresponds to a homonuclear diatomic and 
and a factor of two for the M+M+= 1 term in Eq. (21) when arrangements ~' and 
~ ' +  1 are identical. 

Thus the maximum memory requirement during the computation of the 
~unique Mrad matrix elements in link 10 is Mei"d+~=l ~ +max~[MKBC(~) +Mloc(co]. 

As with the radial function calculation, it is advantageous to order the arrange- 
ments so that ~ = 1 corresponds to the arrangment with the maximum value of 
Ml°C(~). 

The next step performed in link 10 is the reordering of the matrix elements 
to be in the form required for Eq. (4). Prior to the reordering we discard the 
radial functions so that the memory being used is equal to 
mEind"~-MKBC(~unique), where ~unique is the number of unique arrangements. 
When we re0rder the matrix elements, only the lower triangle of SU~ and C will 
be stored, and this storage will be by symmetry blocks. Thus th~total storage 
required for the reordering is MEi"d+ MKBC(eunique ) + ~rr2,], MKm, C(F) where: 

M~'B' c(r) = ½(Nx~(r)) 2 + N ~ ( r ) N  c(r) + ½(N c(F)) 2 (24) 

N ~ ( F )  is the number of rows and columns in sU e for symmetry block F, NC(F) 
is the number of rows and columns in C for sy~maetry block F, Fn~ax is the total 
number of symmetry blocks, and we have made the approximation that the 
number of elements in the lower triangle are equal to half of the total number of 
elements in a square matrix. It can be shown that in the absence of symmetry, 
Fma  x = 1 and: 

MK'B'C(1) 1 + = ~(M~ + M~- + M+) 2 (25) 

After the reordering step is complete, we discard the composite matrix 
so that the storage is reduced to Mei"d+ ~ r~x MKm, C(F) r= 1 words, which is 
passed on to link 11. In summary, the maximum memory for link 10 is 
the maximum of a/tEmd ~_ V C~unique i~rad . . . .  ~ = 1 --~ + max~ [MKBC(~) + MzO~(~)] and M Eind -~- 
MKBC(%nique) 4- v r , ~ .  Mx, B,c(F). 

- -  .¢..aF= 1 

The next large demand on memory will be the evaluation of the right hand 
side of Eq. (4), which is performed by link 11. This is done for each symmetry 
block separately [12]. If we proceed in the simplest fashion, for symmetry block 
F, the first step will be the transformation to complex boundary conditions, and 
this will require an additional MKm, C(F) words of storage, and the next step will 
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be evaluating C-lB. Prior to this step we must make a copy o f / i  in order to 
form the multiplication in Eq. (4). 

We have two options for solving the linear equations. Since t~ is symmetric, 
and we have stored only the lower triangle, we can use routines which form the 
UDU r [25] decomposition of the matrix, or we can store the whole matrix and 
use the LU [25] decomposition. The LU algorithm requires approximately twice 
the memory and twice the operation count as the UDU r algorithm (we use the 
CSPFA and CSPSL routines from L I N P A C K  [25]  modified to store the real and 
imaginary parts of the complex matrices separately); however there are cases 
where the LU algorithm is faster because it is more efficient on a vector-pipelined 
supercomputer. This arises partly from the enhancements available through 
FORTRAN DO loop unrolling [26, 27, 28]. For the applications in Sect. 4, we 
used the LU algorithm for F + H2 and the UDUr algorithm for D + H2. 

Putting this together, the total memory required for symmetry block F will 
be either 2MX'2B'C(F) if the UDU r algorithm is used or 2MK'2B'2C(F) if the LU 
algorithm is used. Here MX,28'C(F) differs from MK, B'C(F) by doubling the 
middle term in Eq. (24), and MK'2B'2C(F) differs from MX'8,C(F) by doubling the 
last two terms in Eq. (24). In addition, it is necessary to store the energy-inde- 
pendent quantities (amounting to MEind), all of the matrix elements for the 
unprocessed symmetry blocks (amounting to ~rr,-ll M~,~,c(r')) and the result 
of Eq. (4) for the completed symmetry blocks (amounting to V rm"x (N~8)2). 

Z _ a U = F + I  

Thus the maximum memory required for link 11 is: 

I r -1  rma~ 1 M ll = M Eina -t- marx ~'~ MK'e'C(F ') + 2MK'2B"C(F) + ~ (N~")  2 , (26) 
F ' = I  F ' = F + I  

where 7 is 1 if the UDU r algorithm is used and 2 if the LU algorithm is used. 
Again we see that the order of the operations is important: to minimize the 

storage requirements F = Fma x should correspond to the symmetry block with 
the smallest number of basis functions and F = 1 should correspond to the 
symmetry block with the largest number of basis functions. In practice, this is 
only an issue for the ii3 case, for which there is one large symmetry block and 
two small ones [12]. In the AB2 case, the two symmetry blocks are typically 
about the same size. 

It is possible to reduce this memory requirement. This occurs when transla- 
tional basis functions in the OWVP do not satisfy the energy-dependent large-R~ 
boundary conditions but instead decay to zero asymptotically. In this case we 
can pre-solve for their coefficients in real arithmetic before transforming to 
complex boundary conditions [6, 18, 29, 30]. All of the WF basis functions of the 
present study satisfy this criterion. In addition, by forming linear combinations 
of the radial HIGF's, it is possible to make new basis functions which span the 
same space as the original HIGF's but having only one function in each channel 
that is not zero asymptotically [18]; thus in principle most of the AD basis 
functions can be treated using real arithmetic as well. However for the present we 
only use this pre-solving technique for the WF basis functions. Thus if the 
number of WF functions is significantly larger than the number of AD functions, 
this reduces the memory bottleneck in link 11 by decreasing the middle term in 
the maximum function of Eq. (26) by about a factor of 2. 

Thus the maximum memory used for the calculation will be the maximum of 
M ~,'a M e~,,a + V C~unique M raa q- max~[MKSC(e) + MzO~(e)], Mei"a + M~ ad't°~ + ~ ' =  1 -.- ~' , z..,~ = 1 c~ 

M~ina 4-14tcBc~ ~ j_ x?r~na~ MK,8,c(F) and M H. We can reduce the cost of a 
- -  ~ ' ~  , , ~ u n i q u e J  ~ Z . . a F =  1 
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calculation either by reducing this maximum memory or by tailoring the 
processing to the computer charging algorithm. Typically, if a job is run with 
static storage (i.e., without using stacks or heaps that are released as procedures 
are exited), the charge for a calculation depends on the product of  the total 
memory used and the total CPU time. Thus if one step, such as link 9, requires 
the maximum memory, but uses only a fraction of  the total run time, it is 
advantageous to split the caculation into two pa r t s - - the  first up to the comple- 
tion of link 9 followed by the saving of  the global link 9 information on disk and 
the second the reading in of  the global link 9 information from disk and then 
completing links 10 and 11. This may also be accomplished by dynamic memory 
directives on some computers. 

We now consider methods for reducing the maximum memory used. First of  
all, we consider the possibility of storing some quantities on disk rather than in 
memory. The options we have implemented are to store the radial functions on 
disk and to store parts of  the matrices on disk. 

I f  we store the radial functions temporarily on disk, then the memory 
bottleneck in the calculation of  the radial functions is reduced from 

Eind rad loc ~ c~ 7lA rad Eind rad loc ]~r rad M + M ~  ' +~,=1~,1~ to M + M ~  ' +~._~ , since we still require 
the radial functions for the current arrangement in memory because the order in 
which they are computed differs from the order in which they will be used in the 
integrals [12]. This scheme could be further optimized by storing the radial 
functions on disk before ordering, then ordering them between links 9 and 10. 
This could reduce the bottleneck further to essentially M Eind q- M rad'l°c. Whether 
or not this bottleneck is significantly smaller depends on the relative sizes of  
M "ad'l°c and M~ ad. I f  there are many AD translational basis functions per channel 
and N,.ot . . . . . .  is not too large, then this will result in a big decrease in memory, 
while if there are few AD translational basis functions per channel and Nrot.max,~, 
is large, then little change in this memory bottleneck will be observed. Next 
turning to using these radial functions in the calculation of  the matrix elements, 
we have several choices: we can repetitively read the functions off disk for each 
quadrature point, we can hold only the radial functions for the current arrange- 
ment pair in memory, or we could consider a combination of choices. For  
example, we could hold the radial functions for arrangement ~ needed for Eqs. 
(9-12,  15) in memory, but keep the functions for arrangement ~o, which are 
needed for Eqs. (5-8 ,  16) on disk, since in principle all of  the ~ radial functions 
are accessed for each ~0 quadrature point. 

The option we have implemented concerning the storage of the unused 
matrix elements is as follows: we perform the inter-arrangement and the intra- 
arrangement integrals separately, and each possible pair of arrangements is done 
separately from the others. Thus it is necessary to only retain in memory the 
current inter-arrangement or intra-arrangement integrals that are being com- 
puted. Thus the maximum number of  integrals required in memory will be the 
maximum value of (M+) 2. This can result in a considerable reduction over 
MK~c(~) defined in Eq. (21), and furthermore one will incur little input/output 
penalty for this option, for each matrix element is written once and read once. 
Then, in the next step of  the calculation, the reordering, the maximum memory 
used will be M E i n d q  - ~Fmax MX'B'C(F) plus the largest single arrangement pair / , F = I  

block of  integrals. 
The options we have just considered can reduce the amount  of  memory used, 

but they do not reduce the sum of  memory and disk usage. There are several 
options which can reduce this sum. One is to reduce the size of Nro, . . . . . .  by 
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considering more general distortion potential blocks than we have done in the 
past. See the discussion in Sect. 3.5 below as well as the examples of Sect. 4. 
Another option is to use WF basis functions rather than AD basis functions, 
which is illustrated in Sect. 4. Yet another idea is to reduce the number of 
translational basis functions by introducing more general functions which are 
more optimized for the particular problem [11, 31-34]. 

In the case where some particles are identical, one could consider performing 
the calculations for each symmetry block separately. However this would be 
unlikely to provide significant memory savings and would be much less efficient 
from a CPU time point of view. This is because there is much information 
required for all symmetry blocks. For example, the system AB2 will require the 
AB + B radial functions and both the AB + B'/AB' + B inter-arrangement and 
AB + B intra-arrangement integrals for both symmetry blocks, and in most cases 
due to the lack of even/old j decoupling for this arrangement, these will be the 
most expensive quantities to calculate and store. Of course, if one was just 
interested in computing probabilities for an initial state that was present in only 
one symmetry block, it would be advantageous to only perform the calculation 
for the desired symmetry block. 

Finally, one could consider not changing the calculation but rather its 
implementation. In particular, because of the various screening procedures (see 
Sect. 3.1) we use to eliminate the computation of negligible contributions to the 
inter-arrangement integrals, we have observed that only a relatively small 
fraction of the radial quadrature points are used in these integrals. However, 
almost all of the radial quadrature points are required for the intra-arrangement 
integrals. Thus the program could be reorganized to compute the intra-arrange- 
ment integrals at the same time that the radial functions are computed, or 
immediately after, and then only the functions at the relatively small number of 
radial quadrature points required for the inter-arrangement integrals would be 
saved. This would greatly reduce M~ aa. This is an idea for further work. 

Another facet of the memory issue not yet addressed is the reuse of matrix 
elements at different total energies. If most of the basis functions used are 
energy-independent WF functions rather than AD function, then many of the 
matrix elements have a simple dependence on the total energy and could be 
reused. However this significantly increases the storage: it is now necessary to 
retain another copy of these matrix elements as well as a new matrix, the overlap 
between the different functions. This would be approximately Vrm~x t ~ c t r ~ 2  / , F = I  ~ , ' '  k* 1 ]  

words of storage if mostly WF functions were used. These would not have to be 
kept in memory, but for really demanding calculations where storage is at a 
premium, it may be more cost effective to recalculate these matrix elements 
rather than storing them. 

3.3. Finite difference parameters 

We begin by considering the question of accuracy. If we have numerical 
instabilities in our algorithm, then the ultimate result of the calculation will be 
suspect. The principal culprit in this regard is the calculation of the regular radial 
functions and the radial HIGF's via the FDBVM. The source of this difficulty 
arises from uneven grid spacing. This occurs because we include Gaussian 
quadrature points in the grid and because we use a many-point approximation 
for the second derivative operator, while we can only supply boundary condi- 
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tions at a single point beyond the end of the grid. Because of the boundary 
conditions, we are required to change the way we approximate the second 
derivative operator at the end of the grid. If  we are not careful, it is possible 
that the errors in the radial functions arise mostly from the way we treat the 
end of the grid. 

There are two ways in which we can avoid specifying conditions at more 
than one point beyond the end of the grid. (We ignore this difficulty at the 
beginning of the grid by assuming that the radial functions are zero for all 
distances smaller than the start of the grid.) The scheme which we have used in 
the past is to reduce the number of points involved in the finite difference 
approximation so that only one point beyond the end of the grid was required 
while retaining the restriction that an equal number of points were used before 
and after the point for which the derivative is evaluated [3]. This means that 
the last point uses the three-point formula, which gives rise to an error propor- 
tional to the stepsize squared, if constant stepsizes are used. In contrast, for 
most of the grid, we have used the nine-point formula, which gives a much 
smaller error, so it is necessary to reduce the stepsize at the end of the grid. In 
practice we do this by augmenting the grid required for the integrals involved 
in the rest of the calculation with a sequence of grid points with geometrically 
decreasing stepsizes. Thus there are points in this part of the grid using second 
derivatives calculated using stepsizes which vary considerably from the first to 
last finite difference point. This can cause difficulties in accurately computing 
the finite difference coefficients. This point is discussed further below. 

To minimize problems with widely varying stepsizes, the choice of the 
decrease factor at the end of the grid must be made carefully. Let f s D  denote 
the stepslze decrease factor and N sD be the number of steps this factor is 
applied. In the past [11], we have recommended a decrease factor of 0.7 over 20 
steps. However, subsequent work has indicated that this is not the best choice. 
Our final conclusions in this matter have not been formulated; however our 
most recent trials indicate that a decrease factor closer to one will cause less 
error from this part of the grid. However, if difficulties at the end of the grid 
are primarily due to the lower-order formulas used at the very end, then it is 
advantageous instead to consider the alternative option of decreasing the step- 
size at the end of the grid relatively rapidly and then taking several fixed 
stepsizes at the very end of the grid. 

An alternative technique is to increase the number of points used in the 
finite difference formula at the end of the grid by relaxing the requirement that 
an equal number of points are used before and after the point for which the 
derivative is required. Then the number of points in the finite difference for- 
mula would not need to be reduced nor the stepsize decreased. However a 
straight-forward application of this idea will lead to difficulties, for this would 
increase the bandwidth of the linear equations at the very end of the grid. To 
avoid this problem, it is necessary to reduce the number of points in the finite 
difference approximation at the end of the grid, but not as severely as previ- 
ously. I f  an NFD-point formula is used in the main part of the grid, with N F° 
an odd integer, then the number of points needs to be reduced to only 
(NFD+ 3)/2. For example, if a nine-point approximation were used for the 
majority of the grid, which is the value we typically used in our previous 
applications, it would be possible to use no less than a six-point approximation 
at the end. Thus we would expect that the stepsizes would have to be decreased 
much less at the end of the grid. 
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An auxiliary question concerns the uniformity of the grid spacings. We 
require an unevenly spaced grid in order to allow grid points to lie on the 
Gaussian quadrature points we require for subsequent integrations as well as to 
provide accuracy at the end of the grid. A uniformly spaced grid will give rise to 
finite difference coefficients which are smaller in magnitude, and since both 
positive and negative signs occur, this means that less numerical cancellation will 
most likely occur, and the solution will be more accurate. In the past, we have 
tried to make the main part of the grid as uniform as possible by interdispersing 
extra points among the quadrature points. These points were inserted by dividing 
the distances between quadrature points by the smallest distance between 
quadrature points, and truncating the result to obtain an integer. If the result of 

i n  1 evenly spaced points are added between the truncation is nj n, then nj 
quadrature point j and j + 1. This is called the "truncate" scheme. Alternatively 
one can use the nearest integer instead of truncation to obtain n} n - t h i s  defines 
the "round" scheme. Finally, one could dispense with the extra points, and just 
use the quadrature points. This yields the "none" scheme. We will denote each 
grid spacing scheme (GSS) by a number; in particular, GSS = 0 denotes the none 
scheme, GSS = 1 denotes the truncate scheme and GSS = 2 denotes the round 
scheme. In previous work we used the truncate scheme and sometimes--in 
convergence checks--we added one or more additional evenly spaced points 
between each two points obtained from the scheme itself. 

In this section, we have outlined several new grid options. It is likely that the 
optimum choice will depend on the situation. Recall that the ultimate use of the 
radial functions is in integrals to form matrix elements. The accuracy of the 
matrix elements will depend on the accuracy in performing the integral and the 
accuracy in calculating the integrand, i.e., the radial functions. If the matrix 
element error is dominated by the integration error, the none scheme may be 
most efficient, while if the error is dominated by the integrand error, the round 
scheme will probably be most efficient. A compromise choice appears to be the 
truncate scheme. 

A different but related question is the number N Fo of points used in the finite 
difference scheme in the main part of the grid. As N FD increases, the number of 
grid points required for a given accuracy decreases while the work and memory 
per grid point increase. Thus in cases where the none scheme might look 
promising, one could consider the alternative of using the round or truncate 
scheme but decrease the number of points in the finite difference approximation. 
Alternatively, in cases where the round scheme appears to be most efficient, it 
may be advantageous to use the truncate or none scheme but increase N FD. 

Another interesting option to consider is to use different orders of Gauss- 
Legendre quadrature in different sections of the main part of the grid. This is 
motivated by the observation that the maximum contribution to the inter- 
arrangement integrals is at short range, and so if the quadrature requirements for 
these integrals are much more stringent than the intra-arrangement integrals, 
then one might be able to reduce the work and memory involved in the FDBVM 
by increasing the grid spacing in the range only important for the intra-arrange- 
ment integrals. 

We now turn to the calculation of the finite difference coefficients themselves. 
If these are not computed accurately, then the rest of the calculation is question- 
able. This is a nontrivial problem because the set of linear equations one solves 
is of the form of a Vandermonde system [35], which is often ill conditioned. We 
minimize this problem by means of two steps. First of all, we scale the length 
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unit so that the smallest stepsize is unity. This causes the magnitude of the matrix 
elements in the linear equations to be all about the same size. The importance of 
doing this can be seen by considering the linear system for the three point 
problem with a grid spacing of h: 

0 h ~ c o ~ =  . (27) 
2 0 h2/\  / 

Here we are approximating d2F/dRZlR o by ~]=- i  ciF(Ro + ih). If h is very small, 
then the numerical difficulties can be encountered in solving Eq. (27); however 
by scaling the length unit we obtain the alternative set of equations: 

- 0 lj  0j= , (28)  

0 1 / \e l  / 

where ci = Y~[h 2. Although the two sets of linear equations are formally equiva- 
lent, we prefer to use Eq. (28). Secondly we use a specialized algorithm to solve 
the linear equations which is less susceptible to rounding errors [35]. 

Once we have computed the finite difference coefficients, our vigilance should 
not end. Numerical difficulties in computing these coefficients probably indicate 
that they vary widely in magnitude, and thus the FDBVM equations can also be 
susceptible to numerical problems. In an attempt to improve the numerical 
properties of the system of linear equations we solve to obtain the radial 
functions, we have introduced the option to perform a row and column scaling 
of the coefficient matrix [25]. The scaling factors are chosen as the inverses of the 
square roots of the absolute values of the diagonal elements, thus the scaled 
matrix contains only _+ 1 on its diagonal. We also can apply the same technique 
to the other linear equation steps in our algorithm, in particular we have 
introduced the option of scaling the linear system for the determination of the 
amplitude density or wave function expansion coefficients, which are given by 
C-~B in Eq. (4). Here the sources of numerical instability are not associated with 
the finite difference grid, but rather the basis set used in the wave function 
expansion. It should be noted that this scaling procedure adds negligible addi- 
tional cost to the solution of the linear equations. For the applications in Sect. 
4, we utilized the row and column scaling of ~-~B for F + H2, but not for 
D + H2. In neither case were the FDBVM equations scaled. 

Finally we note that one should optimize the spatial extent of the finite 
difference grid, i.e., the locations of the first and last grid points. A word of 
warning is in order concerning the cutting back on the maximum R, included in 
the FDBVM grid. This may yield converged transition probabilities but not 
converged phases, which could cause significant inaccuracies when computing 
differential cross sections. 

3.4. Vibrational weights and nodes 

An important detail of  our method which makes it efficient is the technique we 
use to evaluate integrals over the vibrational coordinate. We use an optimized 
quadrature algorithm based upon integration nodes computed from the orthogo- 
nal polynomials generated by the absolute value squared of the ground state 
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vibrational wave function [24]. Although we have not encountered difficulties 
using the algorithm of that reference to compute the quadrature weights and 
nodes, we have introduced an improved algorithm which is more accurate. The 
new algorithm is to compute the quadrature nodes from numerically computed 
moments of the form (r - re)" with the algorithm of Sack and Donovan [36]. 
The quadrature weights are then computed from the solution of the linear 
equations relating the moment integrals to the nodes using the transpose 
Vandermonde algorithm of Ref. [35]. In the absence of round-off error, the 
original and improved algorithms would give identical results. 

3.5. Treatment of high j states 

To obtain well converged results it_is often necessary to include many highj states 
that when considered individually provide only small contributions. For calcula- 
tions at high total angular momentum this is an egregious problem as it is these 
very states that contribute the largest numbers of channels. Thus the desire for 
a small increase in accuracy may incur a vast increase in the computational effort. 
Two strategies have been implemented that partially alleviate this condition. 

In the first strategy we consider optimizing the translational basis for each 
individual channel. In most prior calculations our basis sets were restricted within 
each arrangement to direct products of radial translational basis functions and a 
vibrational-rotational-orbital basis. We now permit each channel to have distinct 
translational basis parameters and allow variable spacing of the distributed 
Gaussians even with a given channel. High vj states typically require fewer less 
closely spaced Gaussians and this provides savings during many stages of the 
calculation. Some of the most relevant options have already been considered in 
the recent study by Halvick et al. [37] and need not be considered further here. 
A general test problem that utilizes this additional freedom is given in the next 
section. 

The second strategy involves the use of more general distortion potentials. In 
prior applications we have usually used a fully rotational coupled distortion 
potential where all channels with the same values of v and ~ are coupled. For a 
rotationally coupled distortion potential with maximum rotational quantum 
number Jmax, where Jmax < J, the number of channels is O(j2max) and thus the 
memory requirements scale .4 as Jmax, and the computational effort scales as j6,x. 
For many calculations this produces a memory bottleneck at the evaluation of the 
regular radial functions and the radial parts of the HIGF's for large total angular 
momenta. The only alternative originally considered was the single-state distor- 
tion potential, where only channels with the same values of v,j, and e are coupled. 
Because we perform the calculation of the matrix elements in the body frame [ 12], 
we cannot uncouple the different values of I that arise when J is greater than zero. 
Now we have introduced several compromise distortion potentials. 

The specification of the new distortion potentials starts with the rotationally 
coupled distortion potential and then decouples selected vj states. There are 
several rules to select these states. One rule is to decouple the closed channel 
states from the open channel states for particular v, and another is to base the 
decoupling on the value of j. Finally, one can decouple all states in distortion 
blocks with particular values of v. We find it convenient to introduce the 
parameterj~, to specify this decoupling. The meaning of this parameter is that all 

~ . d  c~vj states with j ,--J,v are decoupled. It is clear that significant savings in both 
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memory and computational effort can be gained by splitting up large distortion 
blocks. This benefit will occur both in the calculation of  the radial functions and 
in the construction of  the matrix elements. 

These gains are not achieved without a certain price. First of  all, we had to 
revectorize cricical portions of  link 10 to make them more efficient (and 
minimize data motion) for the case of single-channel distortion blocks. Second, 
any coupling that is no longer included in the distortion potential must be 
handled by the variational principle, and thus more translational basis functions 
may be required. When employed in tandem, a carefully chosen combination of  
the two strategies discussed in this subsection can yield substantial savings. 
Examples for state-of-the-art problems are given in the next section. 

4. Applications 

In this section we present applications of the new techniques of the previous 
section to two chemical reactions. First we will consider the system D + H2 using 
the accurate double-many-body-expansion (DMBE) potential energy surface 
[38], and then we will demonstrate the utility of  the new methods for the 
exothermic reaction F + H 2 using the realistic potential energy surface no. 5A 
[39, 40]. The D + H2 calculations reported here illustrate the use of  WF basis 
functions and more efficient quadrature parameters, and the F + H2 calculations 
illustrate the savings that may be achieved by simultaneous use of  several of the 
new techniques described above to maximize the efficiency of  the calculations. 

4.1. D + 112 with the OWVP 

In this section we report the first converged results using the OWVP for a 
reactive system. Convergence studies of  calculations employing Gaussian AD 
basis sets in the GNVP were first reported for the D + H2 reaction in Ref. [ 12], 
and it is convenient to consider the same example here, namely, the reaction at 
total energy E = 0.98337 eV with total angular momentum J = 0. All parameters 
not listed here are the same as in the previous study. In these calculations, we 
monitored two kinds of  probabilities. The first are state-selected probabilities, 
defined by: 

P~# Z E Z  JP (29) = Plvy,='v'f 
c ( = 2 , 3  v' f 

J P  where P=~j,:,v>" is the distinguishable atom transition probability from state cwj to 
state ~ ' v f ,  and ~ = 1 is the initial arrangement, D + H 2 . The second kind of 
probabilities that we monitored for these calculations are state-to-state reactive 
transition probabilities out of  the ground state, defined by: 

J P  P00,~ ~ ~ JP = Pl00,~'v7 (30) 
c( = 2,3 

We do not claim that our final basis set parameters are fully optimum. 
However, a large number of different possible choices were considered, and the 
present results appear to be a good starting point for further optimization. The 
parameters for our two best calculations using WF basis functions are in Table 
1, where N denotes the total number of  channels, M(AD)  denotes the number of 
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Table 1. Translational basis function parameters for 
D + H2 calculations with J = 0. a 

Run A B C 

mm~(AD) 
Rf(AD) ~ 
A(AD) d 

mmax(WF) 
Rf(WF) ° 
A(WF) 

mmax(AD) 
Rla(AD) 
A(AD) 
mmax(WF) 
Rf(WF) 
Z(WF) 

N 
M(AD) 
M(WF) 
M 

D+H2 
3 3 5 
2.8 2.8 2.8 
0.4 0.4 0.4 
3 2 0 
3.6 3.7 - -  
0.45 0.5 - -  
H + D H  
3 3 5 
2.5 2.5 2.5 
0.4 0.4 0.4 
3 2 0 
3.3 3.5 - -  
0.45 0.5 - -  
all three arrangements 
225 225 225 
675 675 1125 
675 450 0 

1350 1125 1125 

a In all cases the overlap parameter c is 1.4 
u Number of functions per channel 
c Center of first basis function (mass-scaled bohr) 
d Spacings between functions (mass-scaled bohr) 

Same as b, c, and d but for WF functions 

A D  basis functions, M ( W F )  denotes the number  o f  W F  basis functions, and M 
denotes the total number  o f  basis functions. I t  should be noted that  N, M ( A D ) ,  
M ( W F ) ,  and M are summed over bo th  permutat ion symmetries even though  in 
the actual calculations permutat ional  symmetry  was used to block diagonalize 
Eq. (4). This is true bo th  for the D + H2 and the F + H2 calculations reported in 
this paper.  The probabilities are in Tables 2 and 3. These O W V P  calculations use 
three energy-dependent  A D  basis functions and two or  three energy-independent  
W F  basis functions per channel. The convergence o f  these calculations compares  
favorably to the previous results for seven energy-independent  basis functions 
[12]. Our  latest (better optimized) results with five energy-dependent  basis 
functions per channel  are also presented for comparison.  

The conclusion we draw f rom these calculations is that  it is possible to obtain 
accurate results using W F  basis functions without  increasing the overall basis set 
requirements, a l though it appears for the present case that  at least three A D  
basis functions must  be used per channel. 

4.2. D + H2 with an optimized strategy for distortion potentials 
and optimized screening parameters 

In  this section we present results that  illustrate the effects o f  decoupling higher j 
states in the distort ion potential.  We will consider the D + H2 reaction again, bu t  
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v j c o n v e r g e d  a R u n  A R u n  B R u n  C 

0 0 6.14(  - 1) b 6 .15(  --  1) 6 .14(  - -  1) 6 .15(  --  1) 

0 1 9 .05(  --  1) 9 .06(  - -  1) 9 .06(  - -  1) 9 .07(  --  1) 

0 2 5.57( - -  1) 5 .56(  --  1) 5 .58(  - -  1) 5 .57(  --  1) 

0 3 6 .77(  - -  1) 6 .77(  - 1) 6 ,78(  - 1) 6 .77(  - 1) 
0 4 7 .08(  - 1) 7 .09(  - -  1) 7 .08(  - 1) 7 .09(  - -  1) 

0 5 4 .62(  - 1) 4 .63(  - -  1) 4 .63(  - -  1) 4 .63(  - 1) 
0 6 2 .21(  - -  1) 2 .21(  - 1) 2 .21(  - 1) 2 .21(  - 1) 

0 7 5 .39(  - 2) 5 .38(  - 2) 5 ,36(  - 2) 5.39( - 2) 

1 0 2 .96(  - 1) 2 .96(  - -  1) 2 .97(  - -  1) 2 .96(  - -  1) 

1 1 4 .08(  - -  l )  4 .07(  - 1) 4 .09(  - 1) 4 .08(  - 1) 
1 2 1 . 2 0 (  - 1)  1 . 2 0 (  - 1)  1 . 2 0 (  - 1)  1 . 2 0 (  - 1)  

1 3 8.65( - -  3) 8 .69(  - -  3) 8,53( - -  3) 8 .74(  - -  3) 

a F r o m  c a l c u l a t i o n  w i t h  16 A D  f u n c t i o n s  
b 6 . 1 4 ( - - 1 )  = 6 . 1 4  X 10 -1 

o f  Ref .  [12] 

J = 0  T a b l e  3. R e a c t i v e  t r a n s i t i o n  p r o b a b i l i t i e s ,  Poo,vT, fo r  D + H 2 

v '  j '  c o n v e r g e d  ~ R u n  A R u n  B R u n  C 

0 0 7.73(  --  2) b 7 .74(  --  2) 7.731 

0 1 1.65( - -  1) 1.66( - -  1) 1.65, 
0 2 1.35( - -  1) 1.35( - -  1) 1.34, 
0 3 5 . 4 4 ( - - 2 )  5 . 4 4 ( - 2 )  5.40, 

0 4 7 .48(  - -  3) 7 .42(  - 3) 7.43, 

0 5 8 .20(  - 3) 8.22( - -  3) 8 . 3 8  

0 6 2 .04(  - -  2) 2 .05(  - -  2) 2.06, 
0 7 1 . 7 3 ( - 2 )  1 . 7 3 ( - - 2 )  1.74, 

0 8 6 .83(  - 3) 6 .82(  - 3) 6.95, 

1 0 2 .37(  - 2) 2 .37(  - 2) 2.381 
1 1 4 . 7 2 ( - - 2 )  4 . 7 3 ( - - 2 )  4.74q 

1 2 3 . 4 3 ( - - 2 )  3 . 4 3 ( - - 2 )  3.43, 

1 3 1 . 3 1 ( - 2 )  1 . 3 2 ( - 2 )  1.31~ 
1 4 2 .39(  - 3) 2 .40(  - 3) 2.38~ 

1 5 8.46( - -  5) 8 .46(  - -  5) 8.48~ 

-2)  7.74(-2) 
- -  1 )  1 . 6 6 (  - -  1 )  

- -  1 )  1 , 3 5 ( - -  1)  

--2) 5,45(--2) 
--3) 7,48(--3) 
-3)  8,20(-3) 
-2)  2,05(-2) 
--2) 1.73(--2) 
-3)  6.83(-3) 
-2)  2.37(-2) 
-2)  4.72(-2) 
--2) 3.43(--2) 
--2) 1.32(-2) 
- 3) 2.40( - 3) 
-5)  8.34(-5) 

a F r o m  c a l c u l a t i o n  o f  Ref .  [12] w i t h  16 A D  f u n c t i o n s  
b 7 . 7 5 ( - - 2 )  = 7 .73  X 10 -2  

now at E = 0.93 eV and with J = 10. In  this case the reactive probabilities we 
tabulate are the state-to-state reactive transit ion probabilities out  o f  the v = 0, 
j = 4 state with even parity, defined by: 

ps=lo,P= + (31) 04,v',f - -  Z p J =  10,P = + - -  - -  104,~'v) ~ 
~' = 2,3 

where ~J=  10,e = + is summed over l' and averaged over the five values o f  initial 104,~'v~/" 
l that  occur for this j in this JP  block. 

Calculations were performed with the two parameter  sets listed in Table 4. 
The definitions o f  parameters  not  given in this paper  are the same as in Ref. [41]. 
In  these calculations, we use the G N V P  for  the scattering matrix, and further- 
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Table 4. Parameter sets for D + H 2 calculations with J = 10 

Set D Set E 

parameter D + H 2 H + DH D + H 2 H + DH 

Jrnax(O = 0 )  a 12  14  13 15 

jmax(v = 1) 12 14 13 15 
Jmax(V = 2) 10 12 11 13 
Jmax(V = 3) 9 9 10 10 
Jmax(V = 4) - -  - -  6 6 
mmax(AD) 5 5 6 6 
R~l (ao) 2.8 2.5 2.7 2.4 
A(ao) 0.40 0.40 0.37 0.37 
c b 1.4 1.4 1.3 1.3 

N(HO) ° 50 50 60 60 
N~A d 30 30 40 40 
N ~  v ~ 12 12 13 13 
N(F)  r 107 107 131 131 
N FD 13 13 13 13 

R~F1 g 1.1 0.8 0.9 0.6 
F g Rc~,N(F ) 11.0 11.0 12.0 12.0 

GSS 0 0 0 0 
f sD  0.9 0.9 0.9 0.9 
N sD 30 30  35 35 
NOS h 11 11 12 12 
NQGL h 7 7 8 8 
N ~  A, N gA i 50, 0 60, 60 

- l ° g l o  ~z 4 7 
- -  log~ 0 E~ad 3 7 
- -  l o g 1 0  ~t 4 7 

--1Oglo ~w 4 7 
--1Oglo E~ 3 7 
N 1023 1239 
M ( A D )  5115 7434 
M ( W F )  0 0 
M 5115 7434 

ajmax(V ) is the max imum value o f j  included for level v 
b C is the Gaussian overlap parameter  of  Hamil ton and Light [44] 
c N(HO)  is the number  of  harmonic oscillator functions used to expand the asymp- 
totic vibrational eigenstates 

d N ~ f  is the number  of  abscissae in the Gauss Legendre quadrature used for intra- 
arrangement angular integrals 
e N ~ V  is the number  of  abscissae in the optimized quadrature [24] used for intra- 
arrangement integrals over the vibrational coordinate 
f N(F)  is the number  of  grid points in the F DB VM  calculations 
g F F R,, a and R~,NfF) a r e  the first and last grid points in the FDBVM calculations 
h The integrations over the radial translational variables, in both intra-arrangement 
and inter-arrangement integrals, are carried out by N QS repetitions of  an NQOL-point 
Gauss -Legendre  quadrature rule 
~N QA is the number  of  abscissae in the Gauss Legendre quadratures used for 
angular integrations in the inter-arrangement exchange integrals between arrange- 
ments ~ and c~' 
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Run 
1 2 3 4 5 6 

v' j '  set D set D Set D set D set D set E 

j d = l  j d o = 7  j a  = 9  j a  w = l l  jd =o~ j a  = 
0 0 1.032( -- 2) a 9.996( -- 3) 9.992( -- 3) 9.993( -- 3) 9.994( -- 3) 9.994( -- 3) 
0 I 2.475(--2) 2.395(--2) 2.397(--2) 2.397(--2) 2.397(--2) 2.396(--2) 
0 2 2.717(--2) 2.633(--2) 2.634(--2) 2.634(--2) 2.634(--2) 2.633(--2) 
0 3 2.275(-2) 2.201(-2) 2.202(-2) 2.202(-2) 2.202(-2) 2.202(-2) 
0 4 1.893(--2) 1.830(--2) 1.830(--2) 1.830(-2) 1.830(--2) 1.831(--2) 
0 5 1.782(-2) 1.734(--2) 1.729(--2) 1.729(--2) 1.729(--2) 1.731(-2) 
0 6 1.674(--2) 1.639(--2) 1.631(--2) 1.631(--2) 1.631(--2) 1.633(-2) 
0 7 1.302(-2) 1.287(-2) 1.272(-2) 1.266(-2) 1.266(-2) 1.268(-2) 
0 8 7.272(-3) 7.186(-3) 7.163(-3) 7.095(-3) 7.100(-3) 7.111(-3) 
0 9 2.338(-3) 2.315(-3) 2.344(-3) 2.309(-3) 2.306(-3) 2.310(-3) 
0 10 1.892(-4) 1.874(-4) 1.930(-4) 1.943(-4) 1.936(-4) 1.951(-4) 
1 0 5.485(-4) 5.262(-4) 5.264(-4) 5.261(-4) 5.261(-4) 5.303(-4) 
1 1 1.177(-3) 1.134(-3) 1.135(-3) 1.135(-3) 1.135(-3) 1.144( - 3 ) -  
1 2 1.014(-3) 9.750(-4) 9.758(-4) 9.751(-4) 9.751(-4) 9.834(-4) 
1 3 5.153(-4) 5.009(-4) 5,007(-4) 5.001(-4) 5.001(-4) 5.044(-4) 
1 4 1.586(-4) 1.504(-4) 1.523(-4) 1.520(-4) 1.521(-4) 1.539(-4) 
1 5 2.042(-5) 1.887(-5) 1.899(-5) 1.899(-5) 1.899(-5) 1.932(-5) 

a 1.032(--2) -= 1.032 x 10 2 

more we use the new F D B V M  option to reduce the finite difference approxima- 
tion at the end of  the grid to only (N eD + 3)/2 points. Set D was used for five 
runs that differed only in the decoupling parameter jd v. For this test we take .a J ~w 
to be independent of  v. Values o f  1, 7, 9 and 11 were considered in addition to 
full rotational coupling. We will denote full rotational coupling by .a j,~ = ~ .  Set 
E was run only using full rotational coupling, and it serves as a convergence 
check for the other parameters. 

Table 5 lists selected transition probabilities for the six calculations, and 
Table 6 gives the time and memory requirements for these cases. In these 

Table 6. Time and memory requirements for D + H 2 calculations with J = 10. 
Times are CPU times relative to that for link 9, run 5. Memory is in millions of 
words 

link 9 link 10 link 11 

Run set j ~  time memory time memory time 

1 D 1 0.037 5.6 0.077 25.3 0.470 
2 D 7 0.072 7.6 0.092 25.4 0.462 
3 D 9 0.163 12.0 0.117 25.5 0.472 
4 D 11 0.396 20.5 0.152 30.0 0.457 
5 D ~ 1.000 45.9 0.233 NL a 0.465 
6 E ~ 1.91 74.0 1.97 74.8 1.254 

a NL denotes less than needed in previous link, thus not limiting 
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calculations, all quantities were kept in memory, i.e., the options to write 
quantities to disk were not used. In all cases, the maximum memory used 
occurred prior to link 11. The variation in the time for link 11 between runs 1-5  
is a measure of the uncertainties of our timings as all these times should be the 
same. Run 1 shows that a single-state distortion potential is not adequate. Run 
3, however, shows that coupling only the first nine states ( j  = 0-8)  gives well 
converged results. This run requires only one sixth as much computing time to 
calculate the radial functions in link 9 as does run 5 with full rotational coupling. 
Appreciable savings are also observed during the integral evaluations of link 10. 
We see that it is efficient to couple together only the most important j states at 
the distortion potential level and to treat the less important states as uncoupled 
at that level. 

Careful use of screening parameters is also very helpful in reducing the 
cost of the integral evaluations. Consider, as an example, the effect of  
the screening parameters for runs using parameter set D of Tables 5 and 6. 
There are (77) 2 different R~, R~, pairs that must be considered. Table 7 shows 
how many are eliminated in the integrations of Eqs. (9-12) by each of 
the screening parameters. Results are listed for parameter set D for both 
J = 0 and J = 10. The parameters ew and Ee generally have only a small 
effect, and E z is responsible for most of the savings. The parameter eraa 
has a limited effect for low J but eventually removes all the remaining points 
in the limit of large J. 

4.3. F + H 2 

In the previous subsection we have illustrated the OWVP by applying it to a 
nearly thermoneutral reaction. In this section we will apply it to a more difficult 
exothermic reaction, and we will also illustrate the savings which can be achieved 
with optimized distortion potentials and refined finite difference grids. Simulta- 
neous use of these methods, together with a channel-dependent translational 
basis and more efficient use of screening parameters yields considerable savings. 
We consider the reaction of F with H2 at a total energy of 0.34 eV with J = 0 on 
the 5A surface of Refs. [39, 40]. The parameters of Yu et al. [42, 43] are taken 
as a starting point, although these parameters were intentionally chosen as 
"safe" rather than fully optimized. The following five modifications are made to 

Table 7. Effects of screening parameters on GNVP calculations for 
D + H2 with parameter set D. Quantity tabulated is number of pairs of 
radial quadrature points 

J = 0  J = 1 0  
total 5929 5929 
eliminated by e X alone 5369 5369 
eliminated by Gad alone 819 1169 
eliminated by either or both of these 5530 5588 
remaining after above 399 341 

of those remaining: 
eliminated by e w 103 98 
eliminated by ~ 58 57 
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the parameters of  Yu et al.: 

(i) All screening parameters are reduced. In particular, cz, Eraa, e,, ew, and ee are 
reduced from 10 -12, 10 -5°, 10 -2°, 10 -2°, and 10 -2°, respectively, to 10 -6, 10  - 3 ,  
10 -6, 10 -4, and 10 -3. 

(ii) The finite difference grid is reduced in both range and number of  grid points, 
and the none scheme with order 13 replaced the truncate scheme with order 9. 
For the F + H2 arrangement, the grid extends from 2.3 to 13 mass-scaled bohr, 
and 10 repetitions of  12-point Gauss-Legendre quadrature are used in the radial 

Table 8. Parameter  sets for F + H 2 calculations 

new Refs. [42, 43] 

parameter  F + H 2 H + FH F + H 2 H + FH 

Jmax(V = 0) 12 22 12 22 
jmax(V = 1) 10 18 10 18 
jma×(V = 2) 8 15 8 15 

Jmax(V = 3) 6 11 6 11 
Jmax(V = 4) 4 7 4 7 
Jmax(V = 5) 4 - -  4 
Jmax(/) = 6) - -  3 - -  3 

- d  . d  
J a o ,  Jc~l O0 1 oo oo 

• d "d J~2,J~3 1 13 ov oo 
- d  J~4 1 1 oo oo 
• d "d 

J c~5 , J c~6 - -  1 oo oo 

mmax(AD ) Table 9 Table 9 16 28 
R~I (ao) Table 9 Table 9 2.0 2.0 
A(ao) Table 9 Table 9 0.3 0.2 
c 1.4 1.4 1.4 1.4 
N(HO) 45 60 45 60 
N QA 40 50 40 50 
N Qv 10 14 10 14 

N ( F )  155 155 1172 1148 
N FD 13 13 9 9 
R~F1 2.3 1.3 0.3611 0.3611 

F Ra,N(F) 13.0 10.0 19.87215 19.87215 
GSS 0 0 1 1 

f s n  0.9 0.9 0.7 0.7 
N sD 35 35 20 20 
N Qs 10 10 16 24 
N QGL 12 12 16 16 
U QA, U QA 80,0 80,80 
- log lo  e x 6 12 
-- loglo era a 3 50 
- loglo Et 6 20 
--loglo Ew 4 20 
-- loglo Ee 3 20 
N 219 219 
N(AD) 1761 5592 
M(WF) 981 0 
N 2742 5592 
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quadratures.  For  the H ÷ H F  arrangement ,  the grid extends f rom 1.3 to 10 
mass-scaled bohr,  and  10 repetit ions of 12-point G a u s s - L e g e n d r e  quadra ture  
are used in the radial quadrature .  For  bo th  arrangements ,  a stepsize decrease 
factor of 0.9 was used for the last 35 steps, and  the finite difference formula  used 
8 points  for the end of the grid. 

(iii) Fo r  the H + H F  arrangement ,  single-state dis tor t ion blocks are used for all 
states having j >i 13 and  v = 2 or 3 and  for all states with v ibra t ional  q u a n t u m  
n u m b e r  equal to 0, 1, 4, 5, or 6. For  the F + H 2  ar rangement  single-state 
dis tor t ion blocks were used for all states having v = 2, 3, or 4. 

(iv) The t rans la t ional  basis is reduced to an average of 8.4 Gauss ians  for the 
F + H2 ar rangement  and  13.6 Gauss ians  for the H + H F  arrangement .  A b o u t  
one third of these are now independent  of energy. 

(v) The parameter  N g  A was set to 0, i.e., the in ter -ar rangement  matr ix  elements 
between the two identical H ÷ H F  arrangements  were neglected. ( In  the present 
calculations we still use 80 for N~2 A, and  N ~  A is no t  needed because we use 
symmetry.)  

These modificat ions decrease the memory  requirements  by abou t  a factor 
of five when all quanti t ies  are kept  in memory,  and  they provide a speed- 
up factor in excess of  twenty wi thout  appreciable loss of  accuracy. Table  8 gives 
most  of  the parameters  for bo th  the new and  the previous [42,43] 

Table 9. Modified translational basis set parameters for the F + H 2 reaction 

R1 a A b (mmax) c Type n~tart d nend e 

F+H2 
3.0 0.30 7 AD 1 6 
3.1 0.34 6 AD 7 18 
3.3 0.35 5 AD 19 45 
4.8 0.30 4 WF 1 18 
4.8 0.30 3 WF 19 33 
4.8 0.30 1 WF 34 45 

H + H F  
2.0 0.40 7 AD 1 14 
2.6 0.50 4 AD 15 23 
2.0 0.20 12 AD 24 35 
2.2 0.20 11 AD 36 70 
2.2 0.40 6 AD 71 78 
2.4 0.40 5 AD 79 87 
4.2 0.26 5 WF 1 78 
4.0 0.26 4 WF 79 87 

a Center of first Gaussian in series (mass-scaled bohr) 
b Spacing between Gaussian in series (mass-scaled bohr) 
c Number of Gaussians in series 
d First channel to which this series of basis functions applies. For the F + H 2 
arrangement the order of the channels is all even j before odd j, then 
[v,j] = [0, 0], [0, 2] . . . . .  [0,jmax(0)], [1, 01 . . . . .  etc. For the H + HF ar- 
rangement, the order of the channels is [v,j] =[0,0],[0, 1] . . . . .  
[0,Jmax(0)], [1, 0] . . . . .  etc 
e Last channel to which this series of basis functions applies 
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Table 10. Reactive transition probabilities, Poj, vT, for F + H 2 on surface 5A 

j v' j '  Yu  et al. a Present 

0 2 0 2.02(--3) b 2.01(--3) 
0 2 1 5.53(--3) 5.54(--3) 
0 2 2 7.85(--3) 7.88(--3) 
0 2 3 9 . 2 1 ( - 3 )  9.23(--3) 
0 2 4 1 . 01 ( -2 )  1.02(--2) 
0 2 5 1.10(--2) 1 .10 ( -2 )  
0 2 6 1 .14 ( -2 )  1 .15 ( -2 )  
0 2 7 1 .10 ( -2 )  1.10(--2) 
0 2 8 9.36(--3) 9 . 3 9 ( - 3 )  
0 2 9 6.72(--3) 6 . 7 7 ( - 3 )  
0 2 10 3.78(--3) 3 . 7 9 ( - 3 )  
0 2 11 1.36( - 3) 1.36( -- 3) 
0 2 12 2 . 6 1 ( - 4 )  2.64(--4) 
0 2 13 5.97( -- 6) 5.92( - 6) 
0 3 0 8 . 4 4 ( - 2 )  8.44(--2) 
0 3 1 1.79( - 1) 1.79( -- 1) 
0 3 2 1.35( - 1) 1 . 3 6 ( -  1) 
0 3 3 4.18(--2) 4 . 1 7 ( - 2 )  
0 3 4 1 .58 ( -3 )  1 .55 ( -3 )  
1 2 0 2 . 5 8 ( - 3 )  2.56(--3) 
1 2 1 7.07(--3) 7 . 0 0 ( - 3 )  
1 2 2 1.00( -- 2) 9.93( - 3) 
1 2 2 1.16(--2) 1 .16 ( -2 )  
1 2 4 1 . 2 6 ( - 2 )  1 .26 ( - -2 )  
1 2 5 1 . 3 5 ( - 2 )  1 . 3 5 ( - 2 )  
1 2 6 1 .39 ( - -2 )  1 .39( - -2 )  
1 2 7 1 . 3 2 ( - 2 )  1 . 3 1 ( - 2 )  
1 2 8 1 . 11 ( - -2 )  1 .10 ( - -2 )  
1 2 9 7 . 8 6 ( - 3 )  7 . 7 5 ( - 3 )  
1 2 10 4.28( -- 3) 4.23( - 3) 
1 2 11 1.49( - 3) 1.45( -- 3) 
1 2 12 2 . 7 3 ( - 4 )  2 . 7 8 ( - 4 )  
1 2 13 6.41(--6) 6 . 0 8 ( - 6 )  
1 3 0 1.01( -- 1) 1.01( - 1) 
1 3 1 2.14( - 1) 2.14( -- 1) 
1 3 2 1.62( - 1) 1.62( - 1) 
1 3 3 5.04( -- 1) 4.98( - 1) 
I 3 4 1 .91 ( -3 )  1.84(--3) 
2 2 0 5.46( - 3) 5.44( -- 3) 
2 2 1 1 .48 ( -3 )  1 .48 ( -3 )  
2 2 2 2.05(--3) 2 . 0 5 ( - 3 )  
2 2 3 2.30( - 3) 2.30( - 3) 
2 2 4 2 . 3 8 ( - 3 )  2 . 3 9 ( - 3 )  
2 2 5 2.43( -- 3) 2.43( - 3) 
2 2 6 2 . 3 8 ( - 3 )  2 . 3 8 ( - 3 )  
2 2 7 2 . 1 5 ( - 3 )  2.15(--3) 
2 2 8 1 .69 ( -3 )  1 .69 ( -3 )  
2 2 9 1.09( -- 3) 1.10( - 3) 
2 2 I0 5.25(-4) 5.26(--4) 
2 2 11 1 .43 ( -4 )  1.44(--4) 
2 2 12 1.65(--5) 1 .69 ( -5 )  
2 2 13 3.09( - 7) 3.01 ( -- 7) 
2 3 0 1.66(--2) 1.66(--2) 
2 3 1 3.53(--2) 3.53(--2) 
2 3 2 2 . 6 8 ( - 2 )  2 . 6 9 ( - 2 )  
2 3 3 8 . 4 0 ( - 2 )  8 . 3 7 ( - 2 )  
2 3 4 3.27(--4) 3 . 1 9 ( - 4 )  

a From the calculations described in Refs. [42, 43] 
b 2.02(--3) ------2.02 X 10 -3 
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calculations, and Table 9 gives the full details o f  the new translational basis 
sets. Let  {mmax(AD),mmax(WF)} denote the number  o f  A D  and W F  basis 
functions in a given channel, and let (v,j) denote the vibrational  and rotat ional  
quan tum numbers  in a state. The table shows that  for the F ÷ H2 arrangement,  
we can obtain converged results with the basis {7,4} for channels 
(0, 0), (0, 2 ) , . . . ,  (0, 10), {6, 4} for (0, 12), (1, even j ) ,  and (2, even j) ,  {5, 3} for  
(0, odd j) ,  (1, 1), (1, 3), (3, even j ) ,  and (4, even j ) ,  and {5, 1} for  (1, 5), (1, 7), 
and ( 2 - 4 ,  odd j).  Fo r  the H + H F  arrangements  the new basis is {12, 5} for the 
v = (1, 0 - 1 1 )  channels, {11, 15} for the (1, 12-18)  channels and the v = 2  or  3 
levels, {7, 5} for (0, 0 -13) ,  {6, 5} for  the v = 4  level, {4, 5} for  (0, 14-22),  and 
{5, 4} for the v = 5 or 6 levels. Table 10 compares  the results o f  the current and 
previous calculations; clearly the agreement is excellent despite the substantial 
reduction in the number  Of Gaussians and the even more  substantial reduct ion in 
the number  o f  energy-dependent basis functions. 

5. Conclusions 

In  this paper  we have considered in detail many  techniques to improve our  
method  for calculating probabilities for  reactive scattering processes in three 
dimensions. These new methods  can provide substantial reductions in the 
amoun t  o f  computa t ional  resources required to obtain accurate results. 
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